Graphs whose flow polynomials have only integral roots

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs whose flow polynomials have only integral roots

We show if the flow polynomial of a bridgeless graph G has only integral roots, then G is the dual graph to a planar chordal graph. We also show that for 3-connected cubic graphs, the same conclusion holds under the weaker hypothesis that it has only real flow roots. Expressed in the language of matroid theory, this result says that the cographic matroids with only integral characteristic roots...

متن کامل

3 A ug 2 00 9 GRAPHS WHOSE FLOW POLYNOMIALS HAVE ONLY INTEGRAL ROOTS

We show if the flow polynomial of a bridgeless graph G has only integral roots, then G is the dual graph to a planar chordal graph. We also show that for 3-connected cubic graphs, the same conclusion holds under the weaker hypothesis that it has only real flow roots. Expressed in the language of matroid theory, this result says that the cographic matroids with only integral characteristic roots...

متن کامل

New families of graphs whose independence polynomials have only real roots

We describe an inductive means of constructing infinite families of graphs, every one of whose members G has independence polynomial I(G; x) having only real zeros. Consequently, such independence polynomials are logarithmically concave and unimodal.

متن کامل

The Eulerian polynomials of type D have only real roots

We give an intrinsic proof of a conjecture of Brenti that all the roots of the Eulerian polynomial of type D are real and a proof of a conjecture of Dilks, Petersen, and Stembridge that all the roots of the affine Eulerian polynomial of type B are real, as well. Résumé. Nous prouvons, de façon intrinsèque, une conjecture de Brenti affirmant que toutes les racines du polynôme eulérien de type D ...

متن کامل

Some Families of Graphs whose Domination Polynomials are Unimodal

Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2011

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2011.01.010